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Abstract: A digital image is a representation of a two-dimensional image as a finite set of digital values, called 

picture elements or pixels. This pixel value represents various aspects of the image like color, brightness, etc. In 

recent years Multi-Resolution Analysis (MRA) techniques are applied for image analysis. MRA offers a 

framework for extracting information from image at various resolutions and can be applied to variety of 

problems in signal and image processing. It is believed that the Human Visual System (HVS) offers a 

hierarchical approach of extracting details from the view. For e.g. when we visit an unfamiliar area first thing 

that catches our sight is large buildings, trees etc. and once we are familiar with the view the subtle and minor 

features like foliage, color hues etc. are noticed. Large amount of data in digital images poses problem in 

storage, display and processing. These and other requirements like feature detection and extraction can be 

addressed by MRA. In this paper we take a look at the various MRA techniques like Wavelet, Ridgelet, Curvelet 

and Contourlet 

Index Keywords: Multi Resolution, Frequency Domain, Discrete Wavelet Transform, Ridgelet Transform, 

Contourlet Transform, Curvelet Transform 

 

I. Introduction 
A digital image is a representation of a two-dimensional image as a finite set of digital values, called 

picture elements or pixels. An image is a two-dimensional function f(x,y), where x and y are the spatial (plane) 

coordinates, and the amplitude of values, called picture elements or p. Pixel values typically represent gray 

levels, colors, heights, opacities etc. In most natural images, the energy is concentrated on the lower frequency 

range. If we see images we see that connected regions of similar texture or gray level combine to form objects. 

If objects are small in size or low in contrast we examine at high resolutions. MRA, as implied by its name, 

analyzes the signal at different frequencies with different resolutions. Multi-resolution offers a natural, 

hierarchical view of information. 

 

II. Why Transform? 
Transform theory plays a fundamental role in image processing, as working with the transform of an image 

instead of the image itself may give us more insight into the properties of the image. Transform offers 

 Better image Processing. 

 Conceptual insights into spatial frequency information. What it means to be smooth, moderate change , fast 

change etc.  

 Fast computation. 

 Alternative representation and sensing.  

 Efficient storage and transmission  

There are two domains of transformation-Spatial and Frequency. Here in this paper we focus on 

Frequency domain transformations in which the image is converted into its frequency distribution. Image has 

two-frequency components- High frequency components correspond to edges in an image whereas Low 

frequency components in an image correspond to smooth regions.  

Discrete Fourier Transform (DFT) is the most common and powerful procedure to analyze, manipulate 

and synthesize digital signals. It is used to determine the harmonic or frequency content of a signal. Fourier 

theorem states that a “Periodic function f(x) may be expressed as the sum of a series of sine or cosine terms” 

(called the Fourier series), each of which has specific amplitude and phase coefficients known as Fourier 

coefficients. DFT decomposes an image in sine and cosine form. 

The big disadvantage of a Fourier expansion however is that it has only frequency resolution and no 

time resolution. This means that although we might be able to determine all the frequencies present in a signal, 

we do not know when they are present. The wavelet transform or wavelet analysis overcomes this shortcoming 

of the Fourier transform by giving a time-frequency joint representation. 
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The idea behind these time-frequency joint representations is to cut the signal of interest into several 

parts and then analyze the parts separately. It is clear that analyzing a signal this way will give more information 

about the when and where of different frequency components. In wavelet analysis a fully scalable modulated 

window is used to cut the signal. The window is shifted along the signal and for every position the spectrum is 

calculated. Then this process is repeated many times with a slightly shorter (or longer) window for every new 

cycle. In the end the result will be a collection of time-frequency representations of the signal, all with different 

resolutions. Because of this collection of representations we can speak of a multiresolution analysis (MRA). 

 

III. Image Pyramids And Sub band Coding 
 

Simple structure of representing images at 

different resolutions is Image Pyramid. An Image 

Pyramid is collection of decreasing resolution images 

arranged in shape of a pyramid.[3] 

 

Subband Coding: In Subband coding an image is 

decomposed into a set of band limited components 

called subbands, which can be reassembled to 

reconstruct the original image without errors. .[3] 
Figure 2 two-band filter bank for 1D subband coding. 
 

 

 

 

IV. Continuos And Discrete Wavelet Transform 
Unlike Fourier transform, whose basis function is sinusoids, wavelet transforms are based on small 

waves called wavelets of varying frequency and limited duration. The continuous wavelet transform uses a 

single function ψ(t) and all its dilated and shifted versions to analyze functions. 

 ………Eq. 1.1 
 

Eq 1.1 [1] states the transformed signal is a function of two variables tau and s, the translation and scale 

parameters, respectively. psi(t) is the transforming function, and it is called the mother wavelet . The term tau 

(translation) is related to the location of the window, as the window is shifted through the signal.  Scale 

parameter, which is defined, as 1/frequency is similar to the scale used in maps. As in the case of maps, high 

scales correspond to a non-detailed global view (of the signal), and low scales correspond to a detailed view. 

Similarly, in terms of frequency, low frequencies (high scales) correspond to global information of a signal (that 

usually spans the entire signal), whereas high frequencies (low scales) correspond to detailed information of a 

hidden pattern in the signal. 

 

COMPUTATION OF CWT 

– Let x (t) is the signal to be analyzed. The mother wavelet (common ones are Haar, Morlet, Meyer) All the 

windows that are used are the dilated (or compressed) and shifted versions of the mother wavelet. 

– Initial scale of s=1 is chosen. The CWT is computed for different values of s. Wavelet computation is done 

by multiplying the signal with wavelet function and then integrated over all times However, depending on 

the signal, a complete transform is usually not necessary. For all practical purposes, the signals are band 

limited, and therefore, computation of the transform for a limited interval of scales is usually adequate. For 

convenience, the procedure will be started from scale s=1 and will continue for the increasing values of s, 

i.e., the analysis will start from high frequencies and proceed towards low frequencies. This first value of s 

will correspond to the most compressed wavelet. As the value of s is increased, the wavelet will dilate. 

Figure 1 Image Pyramid The Base is high-resolution 

representation of image of size N x N being processed 

whereas the apex contains low-resolution approximation. 

As one moves up the pyramid, both size and resolution 

decrease. Fully populated pyramids are composed of j+1 

levels where J=LOG2N Most pyramids are truncated to 

P+1 levels where 1<P<J 
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– The wavelet is placed at the beginning of the signal at the point which corresponds to time=0. The wavelet 

coefficients for s=1,t-0 are computed. The result of the integration is then multiplied by the constant number 

1/sqrt{s}. This multiplication is for energy normalization purposes so that the transformed signal will have 

the same energy at every scale. The final result is the value of the transformation, i.e., the value of the 

continuous wavelet transform at time =0and scale s=1. In other words, it is the value that corresponds to the 

point tau =0 , s=1 in the time-scale plane. 

–  

computed by a computer, then both parameters are increased by a sufficiently small step size. 

This corresponds to sampling the time-scale plane. 

The above procedure is repeated for every value of s. Every computation for a given value of s 

fills the corresponding single row of the time-scale plane. When the process is completed for all 

desired values of s, the CWT of the signal has been calculated. 

The figures below illustrate the entire process step by step. 

 

 
 

Figure 3.3 

In Figure 3.3, the signal and the wavelet function are shown for four different values of tau. The 

signal is a truncated version of the signal shown in Figure 3.1. The scale value is 1, 

corresponding to the lowest scale, or highest frequency. Note how compact it is (the blue 

window). It should be as narrow as the highest frequency component that exists in the signal. 

Four distinct locations of the wavelet function are shown in the figure at to=2, to=40, to=90, and 

to=140. At every location, it is multiplied by the signal. Obviously, the product is nonzero only 

where the signal falls in the region of support of the wavelet, and it is zero elsewhere. By shifting 

 37

 
Figure 3 CWT process step by step. Scale=1 and varying version of Tau. Scale=1 captures highest frequency. 

Notice width of blue band indicates scale. .[2] Fundamental concepts   &  an overview of the wavelet theory 

Robi Polikar 

 

 
 

Figure 3.5 

 

Figures 3.4 and 3.5 illustrate the same process for the scales s=5 and s=20, respectively. Note 

how the window width changes with increasing scale (decreasing frequency). As the window 

width increases, the transform starts picking up the lower frequency components. 

As a result, for every scale and for every time (interval), one point of the time-scale plane is 

computed. The computations at one scale construct the rows of the time-scale plane, and the 

computations at different scales construct the columns of the time-scale plane. 

Now, let's take a look at an example, and see how the wavelet transform really looks like. 

Consider the non-stationary signal in Figure 3.6. This is similar to the example given for the 

STFT, except at different frequencies. As stated on the figure, the signal is composed of four 

frequency components at 30 Hz, 20 Hz, 10 Hz and 5 Hz. 

 39

 
Figure 4 - Notice width of blue band is more as scale has increased indicating low frequency.[2] Fundamental 

concepts  &  an overview of the wavelet theory Robi Polikar 
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– The wavelet at scale s=1 is then shifted towards the right by tau amount to the location t=tau , and the 

wavelet coefficients are computed to get the transform value at t=tau , s=1 in the time- frequency plane. 

This procedure is repeated until the wavelet reaches the end of the signal. One row of points on the time-

scale plane for the scale s=1 is now completed. 

– The above procedure is repeated for every value of s. Every computation for a given value of s fills the 

corresponding single row of the time-scale plane. When the process is completed for all desired values of s, 

the CWT of the signal has been calculated. 

The main idea of Discrete Wavelet Transform (DCT) is the same as it is in the CWT. A time-scale 

representation of a digital signal is obtained using digital filtering techniques. Changing the scale of the analysis 

window, shifting the window in time, multiplying by the signal, and integrating over all times computed CWT. 

In the discrete case, filters of different cutoff frequencies are used to analyze the signal at different scales. The 

signal is passed through a series of high pass filters to analyze the high frequencies, and it is passed through a 

series of low pass filters to analyze the low frequencies. The resolution of the signal, which is a measure of the 

amount of detail information in the signal, is changed by the filtering operations, and the scale is changed by up-

sampling and down-sampling (subsampling) operations. Subsampling a signal means removing some of the 

samples of the signal. For example, subsampling by two refers to dropping every other sample of the signal.  

 

 
Figure 5- Wavelet Transform representation of an image[1] Sparse Image and Ridgelet Processing 

 

 
 

The wavelet coefficients measure how closely correlated the wavelet is with each section of the signal. For 

compact representation, choose a wavelet that matches the shape of the image components   – Example: Haar 

wavelet for black and white drawings  

 

Merits of DWT over DCT: 

– DWT gives better visual image quality as it understands the working of HVS more clearly.  

– DWT defines the multi resolution description of the image. So, the image can be shown in different levels 

of resolution and proceed from low resolution to high resolution.     

 

Demerits of DWT over DCT:    

– DWT is more complex than the DCT. It takes 54 multiplications for computing block of 8x8; distinct 

wavelet calculation depends upon the length of the filter used. 

– Computation cost is higher and its computation time is longer.   

 

V. Ridgelet And Curvelet Transform 
Ridgelets and curvelets are special members of the family of multiscale orientation-selective 

transforms and were developed as an answer to the weakness of the separable wavelet transform in sparsely 

representing what appears to be simple building-block atoms in an image, that is, lines, curves, and edges.[2] 

Ridgelet transform involves  taking a wavelet transform (1-D WT) along the radial variable in the Radon 

domain. The curvelet transform, like the wavelet transform, is a multiscale transform, with frame elements 

indexed by scale and location parameters. It preserves the same time frequency localization property as for 
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wavelets and at the same time, with their elongated support in the Fourier domain, curvelet become directional. 

It acts like a bandpass filter. In addition, anisotropic scaling principle, which is quite different from the isotropic 

scaling of wavelets, helps in sparse representation. The elements obey a special scaling law, where the length of 

the support of a frame elements and the width of the support are linked by the relation width ≈ length
2.
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  

 
 

 

 

 

 

 

Figure 9 Parabolic scaling, Non-linear approximation [7] 
 

Motivated by the need of image analysis, Candes and Donoho developed Curvelet transform in 2000.  

 

 
Figure 9 First generation Curvelet transform DGCT1[1] 

 

Computation cost of DCTG1 is very high and so Second Generation 

Curvelet transform was designed (DCTG2). In DCTG2, first 2D Fast Fourier 

Transform (FFT) of the image is taken. The 2D Fourier frequency plane is then 

divided into wedges. The parabolic shape of wedges is the result of partitioning the 

Fourier plane into dyadic squares and angular divisions. Each square represents a 

scale and acts like a bandpass filter and the angular divisions partition the band 

passed image into different angles or orientations. Thus if we want to deal with a 

particular wedge we’ll need to define it’s scale j and angle l . Each of the wedges 

                                                          

      (ii) Rotational angle: 

                               l⋅⋅⋅=⋅ ⋅J

J 22                                                                 (3) 

 (iii) Translation parameter 

                               )k,k(k 2211 ⋅⋅⋅⋅=⋅                                                          (4) 

Curvelet can be defined as a function: 

                               ⋅⋅ ⋅⋅=⋅ k)x,x.(R.D(.2)x,x( 21j
2

j3

21k,l,j j
 )                        (5) 

         Where  j=0,1,2 …….. is a scale parameter, 

                     Z)k,k(k 21 ⋅=   is a translation parameter, 

                     l =0,1,
j

2 …….. is an orientation parameter 

 

 

 
FIGURE1.Schematic decomposition of a subband in curvelet transform 

 

A curvelet transform differs from other directional wavelet transform in that the 

degree of localization in orientation varies with scale 

 
 

 
    

FIGURE 2.  Curvelet with fixed orientation and location and varying scale 

 

 

 
 

FIGURE 3.  Curvelet with fixed scale and location and varying orientation 

 

Figure 6- Curvelet with fixed orientation 

and location and varying scale[7] 
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FIGURE1.Schematic decomposition of a subband in curvelet transform 

 

A curvelet transform differs from other directional wavelet transform in that the 

degree of localization in orientation varies with scale 

 
 

 
    

FIGURE 2.  Curvelet with fixed orientation and location and varying scale 

 

 

 
 

FIGURE 3.  Curvelet with fixed scale and location and varying orientation 

 

Figure 8- Curvelet with fixed scale and 

location and varying orientation [7] 

Figure 7- Curvelet with fixed orientation and 

scale and varying location [7] 

Non   Linear Approximation

Wavelet Curvelet

Width = Lengh²
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corresponds to a particular Curvelet (shown as ellipses) at a given scale and angle. This indicates that the inverse 

FFT of a particular wedge if taken, will determine the Curvelet coefficients for that scale and angle. Outer scales 

represent the higher frequency components whereas the innermost square represents the low frequency 

components. Intermediate ones represent medium frequencies. It is these scales that will be used for embedding 

the watermarks. There are two implementation of DCTG2- USFFT and wrapping. The unequispaced FFT 

(USFFT) implementation uses a nonstandard interpolation and has a drawback of a higher computational burden 

compared to the wrapping-based implementation. 

The Contourlet’s tight frame of Do and Vetterli (2003b) implements the CurveletG2 idea directly on a 

discrete grid using a perfect reconstruction filter bank procedure. In Lu and Do (2003), the authors proposed a 

modification of the Contourlet with a directional filter bank that provides a frequency partitioning which is close 

to the curvelets, but with no redundancy. 

 

 

 
Algorithm 2 DCTG2-wrapping[1] 

 

VI. Conclusion 
Multi-resolution Analysis is an effective paradigm that offers a hierarchical view of information. 

Features that go undetected in one resolution may be easy to spot in another. As a computational tool it can be 

offered to a variety of problems in image processing. For e.g. feature detection and extraction can be performed 

effectively and quickly using multiresolution techniques to analyze it. the surface of the huge body of material 

recently produced about the discrete wavelet transform.  

This report gave an overview of some multiscale transforms; namely wavelets, ridgelets and curvelets 

and their potential applicability on a wide range of image processing problems. Although these transforms are 

not adaptive, they are strikingly effective both theoretically and practically on piecewise images away from 

smooth contours. 

However, in image processing, the geometry of the image and its regularity is generally not known in 

advance. Therefore, to reach higher sparsity levels, it is necessary to find representations that can adapt 

themselves to the geometrical content of the image. Geometric transforms such as wedgelets or bandlets allow 

defining an adapted multiscale geometry. These transforms perform a non-linear search for an optimal 

representation. They offer geometrical adaptivity together with stable algorithms. 
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